

Direct Releases in the CRA PA

Cliff Hansen Sandia National Laboratories

April 21, 2004

Direct Release Models

Direct Releases occur at the time of an intrusion

- Cuttings: solid material removed by drill bit
- Cavings: solid material removed by circulation of drilling fluid
- Spallings: solid material released because of gas flow towards borehole
- Direct Brine Releases: radionuclides released to the surface in brine flowing from borehole

Conceptual Model for Cuttings and Cavings

"This model is fundamentally appropriate. ... It appears to be capable of accurately representing the waste that might be removed during a drilling intrusion and is fully adequate for implementation in support of the WIPP performance assessment." (CCA Sec. 9.3.1.1)

Changes affecting Cuttings and Cavings

- Waste shear strength
 - CCA: sampled from uniform distribution (0.05 to 10 Pa)
 - CRA: sampled from loguniform distribution (0.05 to 77 Pa) as in 1997 PAVT (V-B-14 Sec. 4.2)
- Drill string angular velocity
 - CCA: constant at 7.8 rad/sec (median of distribution)
 - CRA: sampled from cumulative distribution (4.2 to 23 rad/sec) as in 1997 PAVT (V-B-14 Sec. 5.1)

- Drilling rate updated (from 46.8 to 52.5 bh/km²/10K yr)
- Inventory changes affect releases by cuttings and cavings

Comparison of Cuttings and Cavings Releases

Conclusions: Cuttings and Cavings

- Larger releases due to increase in drilling rate
- Greater uncertainty due to changes in waste shear strength and drill string angular velocity
- Altered shape of CCDFs due to changes in inventory
 - Greater detail included for some waste streams
 - Small-volume, high-activity waste streams responsible for "knee" in CCDF

Historical Perspective on Spallings

- The Conceptual Model Peer Review (CMPR) found that the original spall model developed prior to the CCA was <u>inadequate</u>. (II-G-21 Sec 3.1). DOE developed a new mechanistic model for spallings (Hansen et al., 1997; IV-A-6)
- The CMPR found that this new model was <u>adequate</u> to demonstrate that the values for potential <u>spall volumes</u> included in the CCA calculations were <u>reasonable</u>. (II-G-22 Sec 3.1) However, the CCA spall model remained inadequate. (II-G-22 Sec 4)
- PAVT implemented a simple representation of spall volumes.
- The DOE committed to develop a new spall model prior to recertification.
- New spall model has been developed based on mechanistic model
 - Peer review in July 2003
 - Implemented in DRSPALL code

Conceptual Model for Spallings

Peer Review Results

- Spallings Peer Review conducted 7 10 July 2003
- Peer review (Yew et al., Oct 2003) determined
 - "The new spallings conceptual model appears generally sound in its structure and reasonableness"
 - "The proposed implementation of the new spallings model appears reasonable"
 - "Output from sensitivity analyses indicates acceptable results"

Comparison of Spall Volume from One Intrusion

Comparison of Spall Releases

Comparison of Spall Releases (cont)

Conceptual Model for Direct Brine Releases

- CMPR concerns with DBR model resolved during post-CCA review (II-G-22 Section 4.0)
- Conceptual model unchanged since CCA
 - Parameters changed to account for panel closures
 - Additional set of "middle" intrusion scenarios (panel closures)

DBR Material Map (CCA)

DBR Material Map (CRA)

Logical DBR Grid (CRA)

Note: Model cells are not to scale. The actual dimensions of the grid blocks are indicated along the edge of the diagram.

Relation to BRAGFLO Grid (CRA)

Comparison of Direct Brine Releases

Comparison of Direct Brine Releases (cont)

Construction of CCDFs

- CCDFGF code re-written for CRA to improve
 - Parameter and data traceability
 - Accommodate changes for panel closures (middle intrusion cases)
 - Future code maintenance
- Algorithms for computing releases are similar to CCA
 - For each parameter vector, generate 10,000 random futures
 - Compute release for each future

Comparison of Total Releases

Comparison of Total Releases (cont)

Comparison of Total Releases (cont)

